Further Contributions on the Outer Multiset Dimension of Graphs
نویسندگان
چکیده
The outer multiset dimension $$\textrm{dim}_\textrm{ms}(G)$$ of a graph G is the cardinality smallest set vertices that uniquely recognize all outside this by using multisets distances to set. It proved $$\textrm{dim}_\textrm{ms}(G) = n(G) - 1$$ if and only regular with diameter at most 2. Graphs $$\textrm{dim}_\textrm{ms}(G)=2$$ are described recognized in polynomial time. A lower bound on lexicographic product H when complete or edgeless, extremal graphs determined. $$\textrm{dim}_\textrm{ms}(P_s\,\square \, P_t) 3$$ for $$s\ge t\ge 2$$ .
منابع مشابه
Further Results on Betweenness Centrality of Graphs
Betweenness centrality is a distance-based invariant of graphs. In this paper, we use lexicographic product to compute betweenness centrality of some important classes of graphs. Finally, we pose some open problems related to this topic.
متن کاملOn multiset colorings of graphs
A vertex coloring of a graph G is a multiset coloring if the multisets of colors of the neighbors of every two adjacent vertices are different. The minimum k for which G has a multiset k-coloring is the multiset chromatic number χm(G) of G. For every graph G, χm(G) is bounded above by its chromatic number χ(G). The multiset chromatic numbers of regular graphs are investigated. It is shown that ...
متن کاملThe metric dimension and girth of graphs
A set $Wsubseteq V(G)$ is called a resolving set for $G$, if for each two distinct vertices $u,vin V(G)$ there exists $win W$ such that $d(u,w)neq d(v,w)$, where $d(x,y)$ is the distance between the vertices $x$ and $y$. The minimum cardinality of a resolving set for $G$ is called the metric dimension of $G$, and denoted by $dim(G)$. In this paper, it is proved that in a connected graph $...
متن کاملFractal Dimension of Graphs of Typical Continuous Functions on Manifolds
If M is a compact Riemannian manifold then we show that for typical continuous function defined on M, the upper box dimension of graph(f) is as big as possible and the lower box dimension of graph(f) is as small as possible.
متن کاملFurther results on total mean cordial labeling of graphs
A graph G = (V,E) with p vertices and q edges is said to be a total mean cordial graph if there exists a function f : V (G) → {0, 1, 2} such that f(xy) = [(f(x)+f(y))/2] where x, y ∈ V (G), xy ∈ E(G), and the total number of 0, 1 and 2 are balanced. That is |evf (i) − evf (j)| ≤ 1, i, j ∈ {0, 1, 2} where evf (x) denotes the total number of vertices and edges labeled with x (x = 0, 1, 2). In thi...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
ژورنال
عنوان ژورنال: Results in Mathematics
سال: 2022
ISSN: ['1420-9012', '1422-6383']
DOI: https://doi.org/10.1007/s00025-022-01829-8